Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Br J Pharmacol ; 180 Suppl 2: S1-S22, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-38123153

RESUMO

The Concise Guide to PHARMACOLOGY 2023/24 is the sixth in this series of biennial publications. The Concise Guide provides concise overviews, mostly in tabular format, of the key properties of approximately 1800 drug targets, and about 6000 interactions with about 3900 ligands. There is an emphasis on selective pharmacology (where available), plus links to the open access knowledgebase source of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. Although the Concise Guide constitutes almost 500 pages, the material presented is substantially reduced compared to information and links presented on the website. It provides a permanent, citable, point-in-time record that will survive database updates. The full contents of this section can be found at http://onlinelibrary.wiley.com/doi/10.1111/bph.16176. In addition to this overview, in which are identified 'Other protein targets' which fall outside of the subsequent categorisation, there are six areas of focus: G protein-coupled receptors, ion channels, nuclear hormone receptors, catalytic receptors, enzymes and transporters. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. The landscape format of the Concise Guide is designed to facilitate comparison of related targets from material contemporary to mid-2023, and supersedes data presented in the 2021/22, 2019/20, 2017/18, 2015/16 and 2013/14 Concise Guides and previous Guides to Receptors and Channels. It is produced in close conjunction with the Nomenclature and Standards Committee of the International Union of Basic and Clinical Pharmacology (NC-IUPHAR), therefore, providing official IUPHAR classification and nomenclature for human drug targets, where appropriate.


Assuntos
Bases de Dados de Produtos Farmacêuticos , Farmacologia , Humanos , Bases de Dados Factuais , Canais Iônicos , Ligantes , Receptores Citoplasmáticos e Nucleares
2.
Sci Rep ; 10(1): 20662, 2020 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-33244070

RESUMO

PDA is a major cause of US cancer-related deaths. Oncogenic Kras presents in 90% of human PDAs. Kras mutations occur early in pre-neoplastic lesions but are insufficient to cause PDA. Other contributing factors early in disease progression include chronic pancreatitis, alterations in epigenetic regulators, and tumor suppressor gene mutation. GPCRs activate heterotrimeric G-proteins that stimulate intracellular calcium and oncogenic Kras signaling, thereby promoting pancreatitis and progression to PDA. By contrast, Rgs proteins inhibit Gi/q-coupled GPCRs to negatively regulate PDA progression. Rgs16::GFP is expressed in response to caerulein-induced acinar cell dedifferentiation, early neoplasia, and throughout PDA progression. In genetically engineered mouse models of PDA, Rgs16::GFP is useful for pre-clinical rapid in vivo validation of novel chemotherapeutics targeting early lesions in patients following successful resection or at high risk for progressing to PDA. Cultured primary PDA cells express Rgs16::GFP in response to cytotoxic drugs. A histone deacetylase inhibitor, TSA, stimulated Rgs16::GFP expression in PDA primary cells, potentiated gemcitabine and JQ1 cytotoxicity in cell culture, and Gem + TSA + JQ1 inhibited tumor initiation and progression in vivo. Here we establish the use of Rgs16::GFP expression for testing drug combinations in cell culture and validation of best candidates in our rapid in vivo screen.


Assuntos
Adenocarcinoma/tratamento farmacológico , Adenocarcinoma/patologia , Antineoplásicos/farmacologia , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/patologia , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/patologia , Células Acinares/efeitos dos fármacos , Células Acinares/metabolismo , Células Acinares/patologia , Adenocarcinoma/metabolismo , Animais , Cálcio/metabolismo , Carcinogênese/efeitos dos fármacos , Carcinogênese/metabolismo , Carcinogênese/patologia , Carcinoma Ductal Pancreático/metabolismo , Desdiferenciação Celular/efeitos dos fármacos , Transformação Celular Neoplásica/efeitos dos fármacos , Transformação Celular Neoplásica/metabolismo , Células Cultivadas , Ceruletídeo/metabolismo , Desoxicitidina/análogos & derivados , Desoxicitidina/farmacologia , Progressão da Doença , Proteínas de Ligação ao GTP/metabolismo , Inibidores de Histona Desacetilases/farmacologia , Camundongos , Ductos Pancreáticos/efeitos dos fármacos , Ductos Pancreáticos/metabolismo , Neoplasias Pancreáticas/metabolismo , Pancreatite/tratamento farmacológico , Pancreatite/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Proteínas RGS/metabolismo , Transdução de Sinais/efeitos dos fármacos , Gencitabina , Neoplasias Pancreáticas
3.
J Food Sci Technol ; 57(4): 1430-1438, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32180639

RESUMO

Detecting meat adulteration for quality control and accurate labeling is important and needs convenient analytical methods. This study aimed to investigate and compare the application of the transmission and ATR approaches of FTIR followed by principal component analysis (PCA) to not only discriminate between chicken and beef meat but also quantizing chicken portion of mixtures. Two different approaches are presented; spectra preprocessing with focus on wavenumber region of 1700-1071 cm-1, and no preprocessed where PCA was applied on the whole spectra range of mid-FTIR. The results suggest that applying PCA on specified preprocessed spectra could detect hidden relationships between variables in chicken and beef in both approaches. PCA successfully clustered these kinds of meats when applied on transmission mode spectra without any preprocessing treatment, while applying it on ATR mode's raw spectra failed to cluster them. Additionally, the preprocessed ATR-FTIR spectrum was used to prepare regression models by Partial Least Square Regression (PLS-R) and artificial neural networks (ANN) for predicting presence and percentage of chicken meat in the beef meat mixture. The results demonstrated the superiority of ANN over PLS-R in this assessment with an R2 of 0.999.

4.
Iran J Pharm Res ; 18(Suppl1): 190-197, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-32802099

RESUMO

Meat, as an important source of protein, is one of the main parts of many people's diet. Due to economic interests and thereupon adulteration, there are special concerns on its accurate labeling. In this study Fourier transform infrared (ATR-FTIR) spectroscopy combined with chemometric techniques (principal component analysis (PCA), artificial neural networks (ANNs), and partial least square regression (PLS-R)) were employed for discrimination of pure beef meat from textured soy protein plus detection and quantification of texture soy protein in a mixture with beef meat. Spectral preprocessing was carried out on each spectra including Savitzki-Golay (SG) smoothing filter, Standard Normal Vitiate (SNV), scatter correction (MSC), and min-max normalization. Spectral range 1700-1071 cm-1 was selected for further analysis. Principal component analysis showed discrete clustering of pure samples. In the next step, supervised artificial neural networks (ANNs) were performed for classification and discrimination. The results showed classification accuracy of 100% using this model. Furthermore, PLS-R model correlated the actual and FTIR estimated values of texture soy protein in beef meat mixture with coefficient of determination (R2) of 0.976. In conclusion, it was demonstrated that ATR-FTIR spectroscopy along with PCA and ANNs analysis might potentially replace traditional laborious and time-consuming analytical techniques to detect adulteration in beef meat as a rapid, low cost, and highly accurate method.

5.
Am J Pathol ; 188(3): 616-626, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29248457

RESUMO

Pancreatic ductal adenocarcinoma (PDA) is a deadly cancer that resists efforts to identify better chemotherapeutics. PDA is associated with chronic pancreatitis and acinar cell dedifferentiation. This reduces enzyme production by the exocrine pancreas, resulting in digestive insufficiencies. Malabsorption of partially digested food causes bloating, overfilled intestines, abdominal pain, excessive feces, steatorrhea, and malnutrition. These maladies affect quality of life and restrict treatment options for pancreatitis and PDA. Here, we characterize health benefits and risks of dietary pancreatic enzymes in three mouse models of PDA-KC, KCR8-16, and KIC. KC expresses oncogenic KrasG12D in pancreatic tissue whereas KCR8-16 also has deletions of the Rgs8 and Rgs16 genes. Rgs proteins inhibit the release of digestive enzymes evoked by G-protein-coupled-receptor agonists. KC and KCR8-16 mice developed dedifferentiated exocrine pancreata within 2 months of age and became malnourished, underweight, hypoglycemic, and hypothermic. KC mice adapted but KCR8-16 mice rapidly transitioned to starvation after mild metabolic challenges. Dietary pancreatic enzyme supplements reversed these symptoms in KC and KCR8-16 animals, and extended survival. Therefore, we tested the benefits of pancreatic enzymes in an aggressive mouse model of PDA (KIC). Median survival improved with dietary pancreatic enzyme supplements and was extended further when combined with warfarin and gemcitabine chemotherapy. However, dietary pancreatic enzymes stimulated tumor growth in the terminal stages of disease progression in KIC mice.


Assuntos
Carcinoma Ductal Pancreático/complicações , Desnutrição/tratamento farmacológico , Neoplasias Pancreáticas/complicações , Animais , Glicemia , Carcinoma Ductal Pancreático/patologia , Modelos Animais de Doenças , Progressão da Doença , Ingestão de Alimentos , Feminino , Insulina/sangue , Masculino , Desnutrição/etiologia , Desnutrição/patologia , Camundongos , Neoplasias Pancreáticas/patologia
6.
Dis Model Mech ; 8(10): 1201-11, 2015 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-26438693

RESUMO

Pancreatic ductal adenocarcinoma (PDA) is the fourth leading cause of cancer-related deaths in the United States, and is projected to be second by 2025. It has the worst survival rate among all major cancers. Two pressing needs for extending life expectancy of affected individuals are the development of new approaches to identify improved therapeutics, addressed herein, and the identification of early markers. PDA advances through a complex series of intercellular and physiological interactions that drive cancer progression in response to organ stress, organ failure, malnutrition, and infiltrating immune and stromal cells. Candidate drugs identified in organ culture or cell-based screens must be validated in preclinical models such as KIC (p48(Cre);LSL-Kras(G12D);Cdkn2a(f/f)) mice, a genetically engineered model of PDA in which large aggressive tumors develop by 4 weeks of age. We report a rapid, systematic and robust in vivo screen for effective drug combinations to treat Kras-dependent PDA. Kras mutations occur early in tumor progression in over 90% of human PDA cases. Protein kinase and G-protein coupled receptor (GPCR) signaling activates Kras. Regulators of G-protein signaling (RGS) proteins are coincidence detectors that can be induced by multiple inputs to feedback-regulate GPCR signaling. We crossed Rgs16::GFP bacterial artificial chromosome (BAC) transgenic mice with KIC mice and show that the Rgs16::GFP transgene is a Kras(G12D)-dependent marker of all stages of PDA, and increases proportionally to tumor burden in KIC mice. RNA sequencing (RNA-Seq) analysis of cultured primary PDA cells reveals characteristics of embryonic progenitors of pancreatic ducts and endocrine cells, and extraordinarily high expression of the receptor tyrosine kinase Axl, an emerging cancer drug target. In proof-of-principle drug screens, we find that weanling KIC mice with PDA treated for 2 weeks with gemcitabine (with or without Abraxane) plus inhibitors of Axl signaling (warfarin and BGB324) have fewer tumor initiation sites and reduced tumor size compared with the standard-of-care treatment. Rgs16::GFP is therefore an in vivo reporter of PDA progression and sensitivity to new chemotherapeutic drug regimens such as Axl-targeted agents. This screening strategy can potentially be applied to identify improved therapeutics for other cancers.


Assuntos
Antineoplásicos/uso terapêutico , Carcinoma Ductal Pancreático/tratamento farmacológico , Avaliação Pré-Clínica de Medicamentos , Neoplasias Pancreáticas/tratamento farmacológico , Paclitaxel Ligado a Albumina/farmacologia , Paclitaxel Ligado a Albumina/uso terapêutico , Animais , Antineoplásicos/farmacologia , Bioensaio , Carcinogênese/patologia , Carcinoma Ductal Pancreático/patologia , Proliferação de Células , Desoxicitidina/análogos & derivados , Desoxicitidina/farmacologia , Desoxicitidina/uso terapêutico , Genes Reporter , Proteínas de Fluorescência Verde/metabolismo , Humanos , Camundongos , Neoplasias Pancreáticas/patologia , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Proteínas RGS/metabolismo , Receptores Proteína Tirosina Quinases/antagonistas & inibidores , Receptores Proteína Tirosina Quinases/metabolismo , Gencitabina , Receptor Tirosina Quinase Axl , Neoplasias Pancreáticas
7.
Int J Mol Cell Med ; 3(4): 255-62, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25635252

RESUMO

Interleukin-1ß (IL-1ß) has a role in ß- cell destruction in autoimmune diabetes by stimulating the expression of inducible nitric oxide synthase (iNOS) that generates the free radical nitric oxide. We aimed to investigate the effect of Achillea millefolium L, as a traditional hypoglycemic agent, on IL-1ß and iNOS gene expression of pancreatic tissue in the STZ- induced diabetic rats. Forty adult male Wistar rats were randomly divided into four groups: 1. diabetic control; 2. diabetic rats treated with Achillea millefolium L. extract; 3. normal rats received only extract and 4. negative control (n= 10 each). Diabetes was induced by single i.p. injection of 45 mg/ kg streptozotocin (STZ). Rats in groups 2 and 3 were treated with i.p. injection of Achillea millefolium L. extract (100 mg/ kg/ day) for 14 days. Body weight, serum glucose and insulin levels were assayed at baseline and on days 3, 7, 10 and 14 of the experiment. Finally, the quantity of pancreatic IL-1ß and iNOS mRNA was determined by real- time PCR. The mRNA expression level of IL-1ß and iNOS genes, was significantly (p<0.001) increased in diabetic rats of group 1. Treatment with Achillea millefolium L. caused a significant (p<0.01) reduction in both IL-1ß and iNOS genes expression. Moreover, rats in group 2 had higher insulin level associated with lower glucose level and higher body weight compared to control diabetic group. It seems that beneficial effect of Achillea millefolium L. on STZ- induced diabetes is at least partly due to amelioration of IL-1ß and iNOS gene over expression which can have a ß-cell protective effect.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...